Categories
news

Diet-Induced Neuropeptide Expression: Feasibility of Quantifying Extended and Highly Charged Endogenous Peptide Sequences by Selected Reaction Monitoring

Understanding regulation and action of endogenous peptides, especially neuropeptides, which serve as inter- and intracellular signal transmitters, is key in understanding a variety of functional processes, such as energy balance, memory, circadian rhythm, drug addiction, etc. Therefore, accurate and reproducible quantification of these bioactive endogenous compounds is highly relevant. The biosynthesis of endogenous peptides, involving multiple possible trimming and modification events, hinders the de novo prediction of the active peptide sequences, making MS-based measurements very valuable in determining the actual active compounds. Here, we report an extended selected reaction monitoring (SRM)-based strategy to reproducibly and quantitatively monitor the abundances of a set of 15 endogenously occurring peptides from Rattus norvegicus hypothalamus. We demonstrate that SRM can be extended toward reproducible detection and quantification of peptides, bearing characteristics very different from tryptic peptides. We show that long peptide sequences, producing precursors with up to five and MS2 fragment ions with up to three charges, can be targeted by SRM on a triple quadrupole instrument. Using this approach to quantify endogenous peptide levels in hypothalami of animals subjected to different diets revealed several significant changes, most notably the significant upregulation of VGF-derived signaling peptide AQEE-30 upon high caloric feeding.

Schmidlin T, Boender AJ, Frese CK, Heck AJ, Adan RA, Altelaar AF.

Anal Chem. 2015 Oct 6;87(19):9966-9973

 

Categories
news

PhosphoPath: Visualization of Phosphosite-centric Dynamics in Temporal Molecular Networks

Protein phosphorylation is an essential post-translational modification (PTM) regulating many biological processes at the cellular and multicellular level. Continuous improvements in phosphoproteomics technology allow the analysis of this PTM in an expanding biological content. Yet, up till now proteome data visualization tools are still very gene centric, hampering the ability to comprehensively map and study PTM dynamics. Here we present PhosphoPath, a Cytoscape app designed for the visualization and analysis of quantitative proteome and phosphoproteome datasets. PhosphoPath brings knowledge into the biological network by importing publically available data, and enables PTM site-specific visualization of information from quantitative time series. To showcase PhosphoPath performance we use a quantitative proteomics dataset comparing patient derived melanoma cell lines grown either in conventional cell culture or xenografts.

PhosphoPath: Visualization of phosphosite-centric dynamics in temporal molecular networks

Raaijmakers LM, Giansanti P, Possik PA, Mueller J, Peeper DS, Heck AJ, Altelaar AF.
J Proteome Res. 2015 Oct 2;14(10):4332-4341
50 free e-prints of the final published article are available for interested colleagues: click here
Categories
news

Signal Transduction Reaction Monitoring Deciphers Site-Specific PI3K-mTOR/MAPK Pathway Dynamics in Oncogene-Induced Senescence

We report a straightforward strategy to comprehensively monitor signal transduction pathway dynamics in mammalian systems. Combining targeted quantitative proteomics with highly selective phosphopeptide enrichment, we monitor, with great sensitivity, phosphorylation dynamics of the PI3K-mTOR and MAPK signaling networks. Our approach consists of a single enrichment step followed by a single targeted proteomics experiment, circumventing the need for labeling and immune purification while enabling analysis of selected phosphorylation nodes throughout signaling pathways. The need for such a comprehensive pathway analysis is illustrated by highlighting previously uncharacterized phosphorylation changes in oncogene-induced senescence, associated with diverse biological phenotypes and pharmacological intervention of the PI3K-mTOR pathway.

de Graaf EL, Kaplon J, Mohammed S, Vereijken LA, Duarte DP, Redondo Gallego L, Heck AJ, Peeper DS, Altelaar AF.

J Proteome Res. 2015 Jul 2;14(7):2906-14.

Categories
news

Benchmarking multiple fragmentation methods on an orbitrap fusion for top-down phospho-proteoform characterization.

Top-down analysis of intact proteins by mass spectrometry provides an ideal platform for comprehensive proteoform characterization, in particular, for the identification and localization of post-translational modifications (PTM) co-occurring on a protein. One of the main bottlenecks in top-down proteomics is insufficient protein sequence coverage caused by incomplete protein fragmentation. Based on previous work on peptides, increasing sequence coverage and PTM localization by combining sequential ETD and HCD fragmentation in a single fragmentation event, we hypothesized that protein sequence coverage and phospho-proteoform characterization could be equally improved by this new dual fragmentation method termed EThcD, recently been made available on the Orbitrap Fusion. Here, we systematically benchmark the performance of several (hybrid) fragmentation methods for intact protein analysis on an Orbitrap Fusion, using as a model system a 17.5 kDa N-terminal fragment of the mitotic regulator Bora. During cell division Bora becomes multiply phosphorylated by a variety of cell cycle kinases, including Aurora A and Plk1, albeit at distinctive sites. Here, we monitor the phosphorylation of Bora by Aurora A and Plk1, analyzing the generated distinctive phospho-proteoforms by top-down fragmentation. We show that EThcD and ETciD on a Fusion are feasible and capable of providing richer fragmentation spectra compared to HCD or ETD alone, increasing protein sequence coverage, and thereby facilitating phosphosite localization and the determination of kinase specific phosphorylation sites in these phospho-proteoforms. Data are available via ProteomeXchange with identifier PXD001845.

Brunner AM, Lössl P, Liu F, Huguet R, Mullen C, Yamashita M, Zabrouskov V, Makarov A, Altelaar AF, Heck AJ.

Anal Chem. 2015 Apr 21;87(8):4152-4158